
December 2017 ECP ST Project Review
ECP Project WBS 2.3.5.04 (SNL ATDM Software Ecosystem)

PM: Ron Brightwell (Sandia Labs)
12/20/2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-13777R

2 Exascale Computing Project

Project Overview

• Ron Brightwell – project manager

• OS/On-Node Runtime (OS/ONR) Team
– Stephen Olivier – technical lead, runtime systems
– Kevin Pedretti – technical lead, operating systems
– Andrew Younge – containers and virtualization
– Kurt Ferreira, Scott Levy – MPI and noise characterization
– Ryan Grant – interconnects, network stack, MPI Forum
– Noah Evans – runtime and operating systems

• ASD Technology Demonstrator Team
– Michael Tupek
– Jesse Thomas
– Patrick Xavier

• Funding: $1500k per year
– $1275k OS/ONR
– $225k Tech Demo

Qthreads
Impact Goal Impact Metric
Maximize the impact of Kokkos
and AMT programming models
developed under SNL ATDM
project

The number of SNL legacy
applications using Kokkos and
AMT models

Develop OS/R resource
management policies and
mechanisms appropriate for SNL
ATDM applications

The number of SNL ATDM and
ECP applications and vendor
OS/R environments using
technologies developed in this
project

3 Exascale Computing Project

Project Plan

• On-node runtime ATDM effort started in FY16, combined OS/R effort in FY17
• Four Main Thrust areas

– Containers and virtualization technology
– Characterizing applications’ MPI usage and sensitivity to system noise
– Lightweight operating systems
– Runtime systems for on-node multithreading

• Technology demonstrator
– Pave path to integrate ATDM-developed technologies into the wider ASC integrated code

suite, principally the Sierra engineering analysis applications
– Produce demonstration applications to drive development of Asynchronous Many-Task

Scheduling toolset
– Enable leveraging of Sierra-developed technologies to support ATDM application milestones

(for example stk::simd and stk::search)

4 Exascale Computing Project

Significance for ECP and ASC
• Provide system software support for the ATDM applications and the libraries (e.g., Kokkos and

Darma) on which they are built

• Demonstrate use of technologies for exploiting emerging architectures and programming models
in contexts relevant to ASC Integrated Codes (i.e., Sandia’s non-ATDM mission applications)

• Prepare for efficient use of current and future ATS platforms and the coming exascale systems

• Coordinate with broader ECP efforts to prepare the software ecosystem for exascale

5 Exascale Computing Project

Long-term Deliverables (FY19 and Beyond)

Work for future deliverables beyond FY19:

• System software for application enablement on successive ATS systems as they are deployed

• Early evaluation advanced hardware developed in Path Forward and exascale testbeds
– Interconnect technology
– Novel developments in node architectures

• Deeper interactions with Integrated Codes for use of ATDM technologies in mission apps

Project Milestone
TD Demonstrate integration of DARMA AMT enabled module with MPI based solvers in the tech demonstrator
TD Enhance and optimize stk::simd toolset for use on ATS-2
OSR Deploy containers and related technologies on advanced architecture testbed systems
OSR Evaluate performance of ATDM workloads running on vendor lightweight kernel OS/R stacks
OSR Test and evaluation of node resource management and runtime on ATS-1/2
OSR Characterize OS/R resource usage for ATDM workloads and assess impact on performance
OSR Contribute to OpenMP specification and vendor engagement in support of OpenMP 4.x-5.0 to meet the needs of Kokkos and ATDM

apps
OSR Contribute to MPI specification and vendor engagement in support of standards compliant and performant MPI implementation for

Kokkos and ATDM applications
OSR Contribute to utility thread interface (UTI) specification with Intel, RIKEN, and CEA. Engage with ATS vendors to prototype and deploy

on ATS systems

6 Exascale Computing Project

Delivery of Capabilities
• Strong track record

– Production lightweight OS deployment on ASC platforms, most recently Red Storm
– Qthreads runtime used as tasking layer in Cray’s Chapel runtime
– Portals network semantics adopted by multiple hardware vendors

• Influence in development of standards like MPI and OpenMP

• Incorporating container technologies into ATDM DevOps workflows

• Qthreads runtime, Kitten OS available open source on github
– Qthreads uses BSD license, Kitten uses GPL
– Possible inclusion in OpenHPC

7 Exascale Computing Project

Milestone Progress: Summary

Goal Metric
Maximize the impact of Kokkos and AMT programming
models developed under SNL ATDM project

The number of SNL legacy applications using Kokkos and
AMT models

Develop OS/R resource management policies and
mechanisms appropriate for SNL ATDM applications

The number of SNL ATDM and ECP applications and
vendor OS/R environments using technologies developed
in this project

Project Completed FY17 Milestone

TD Evaluate the performance of technology demonstrator that exercise ATDM NGP components and exhibit a range of load
balancing and data movement scenarios that are representative of Sandia engineering codes

OSR Requirements Gathering for OS Services

OSR Characterize OS jitter signatures critical to performance at exascale

OSR Refactored and optimized Qthreads/Kokkos tasking implementation for manycore

OSR OS support for on-node resource management and containerization

OSR Prototype of on-node system software resource management

OSR Develop SNL-OS support for Trinity ATS-1 platform

8 Exascale Computing Project

Highlights: Enabling Diverse Software Stacks on Supercomputers
using High Performance Virtual Clusters

• Problem
– HPC, Large-Scale Data Analytics, and Cloud have significantly different OS/R requirements
– Containers cover many use cases, but not ones where different OS kernels are required

• Approach
– Add hypervisor capability to supercomputer compute node OS
– Build virtual clusters using a collection of virtual machines

8

Impact: First demonstration of virtual
clusters on Cray systems. Cray has
reproduced results in house and are

working with us on tech transfer.
HPCG	Running	on	Cray	XC30,	Native	vs.	Virtual

Spark-PERF	Running	on	Cray	XC30	in	Virtual	Cluster

Scale
Through

put
Aggr-by-

key
Aggr-by-
key-int

Aggr-by-
key-

naive

Sort-by-
key Sort-by-

key-int Count
Count-
filter

0.001 2.6585 0.106 0.1085 0.199 0.114 0.1125 0.034 0.0575

0.01 2.6285 0.219 0.1905 0.4135 0.3065 0.3765 0.0395 0.0935

0.1 2.683 0.474 0.437 0.9605 0.839 0.7075 0.056 0.1495

1 2.6975 2.24 1.886 5.19 2.976 1.797 0.162 0.2665

10 2.642 15.429 47.629 32.9335 5.378 3.9455 1.1095 1.1935
Cluster’17 Paper: Enabling Diverse Software Stacks
on Supercomputers using High Performance Virtual Clusters

9 Exascale Computing Project

A Tale of Two Systems: Using Containerization to Deploy
HPC Applications on Supercomputers and Clouds

• Problem
– Supercomputers are scarce resources, busy and expensive

• Approach
– Leverage Singularity containers to enable initial application dev/test in cloud,

seamlessly move to supercomputer when needed for higher performance
– Compared performance of same containers running on Cray and Amazon EC2 (for similar hardware)

9
CloudCom’17 Paper: “A Tale of Two Systems: Using Containerization
to Deploy HPC Applications on Supercomputers and Clouds”

IMB PingPong Latency HPCG Weak Scaling

Impact:
Container portability

from laptops, to clouds,
to supercomputers with

native performance

10 Exascale Computing Project

Highlights: Orchestrating Specialized OS/R’s in Multi-Enclave
Environments
• Problem

– Multi-kernel OS/R’s for exascale: Intel mOS, RIKEN McKernel, DOE Hobbes
– No common infrastructure for deploying, managing, and composing these OS/R’s

• Approach
– Develop generalized OS/R agnostic interfaces for managing and configuring

multiple OS/R enclaves running on the same compute node

10

Orchestrating Specialized OS/Rs in Supercomputing Environments Conference’17, July 2017, Washington, DC, USA

Linux
(E0)

Co-Kernel OS/R
(E1)

HARDWARE

OS/R init_task

Rsrc
ID

Hobbes
Entity

Phys
ID

Alloc’d

M0 E0 0x100000 Yes

M1 E1 0x200000 Yes

M2 N/A 0x300000 No

M3 A0 0x400000 Yes

M4 A1 0x500000 Yes

Rsrc
ID

Hobbes
Entity

Phys
ID

Alloc’d

C0 E0 Apic 0 Yes

C1 N/A Apic 2 No

C2 E1 Apic 4 Yes

C3 E1 Apic 6 Yes

C4 E2 Apic 8 Yes

In-Memory Resource Database
Memory Table Core Table

Co-Kernel OS/R
(E2)

VMM

Arbitrary OS/R
(E3)

Device Table

Application
Table

…

Local Database Client
(Memory Mapping)

Application Task
(A0)

(A1)

Figure 1: High level view of resource management in an ar-
bitrary multi-OS/R system

and Singularity [27] allow users to customize their user-level sys-
tem image with containers, and provide coarse grained resource
partitioning operations via interfaces such as Linux cgroups, while
sharing the underlying OS kernel across all application components.

The major takeaway of this discussion is that, while special-
ized resource management is widely recognized as a critical fea-
ture for exascale system software, there is little convergence on
where resource management will actually occur, and there is no
existing OS/R architecture that can arbitrarily support specialized
resource management at each level of the stack. Today’s underlying
multi-enclave OS/R architectures [10, 30, 34] each provide environ-
ments that are tightly coupled to a speci�c lightweight co-kernel.
Thus, while these e�orts have achieved impressive results for noise
removal and have made application-level resource management
practical in real systems, there is no broader support for other spe-
cialized kernels or runtimes, entities that provide a wide array of
system services that will likely be needed at exascale.

The approach we take in this work is to provide arbitrary support
for specialization across all layers of the system software stack. Our
system supports any arbitrary con�guration of specialized kernels,
runtimes, and applications and allows each level of the stack to
manage underlying hardware resources directly.

4 ORCHESTRATING SPECIALIZED OS/RS
Exascale system software is trending towards specialized OS/R
architectures [10, 12, 13, 22, 30, 34, 37]. In this work, we build o�
of the recent e�orts of the HPC systems software community in
specialized OS/R architectures. Speci�cally, we provide a core set
of interfaces and resource management principles that make it
straightforward to (1) leverage these and additional arbitrary OS/Rs
in future supercomputers, and (2) orchestrate jobs, work�ows, and
other system activities across multiple enclaves in multi-OS/R based
systems.

4.1 System Components
The primary motivation behind the majority of specialized OS/R
architectures is the desire to provide customized resource manage-
ment approaches that have been optimized to a speci�c subset of
workloads. These systems allow low overhead access to hardware
resources with a small set of abstractions tailored to the needs of
the target applications. As such, deploying and managing a collec-
tion of these OS/Rs requires a uni�ed approach to allocating and
assigning resources for each system software layer. To provide this
capability we have implemented a node-level resource management
framework that operates outside the context of an operating sys-
tem. In our model, resources are dynamically assigned to system
software instances via user-level operations that are independent
of any other OS/R running on the node.

Underlying our approach is a very thin set of abstractions that
are used to represent and manage individual hardware resources.
Our approach operates on two primary classes of objects: Entities
which are de�ned as any software components capable of directly
managing a set of hardware resources, and Resources which are a
set of hardware units capable of being independently managed by
a given Entity.

Hobbes Entities. In Hobbes, entities are any piece of software that
is able to directly manage a raw piece of physical hardware. This
de�nition intentionally does not specify at what layer of the system
software stack the entity is operating at. It is possible for a Hobbes
entity to be an operating system kernel, a runtime environment, or
even an application itself. This approach allows various software
components to e�ectively bypass resource management policies of
underlying system software layers when the features provided by
those layers are not needed.

Hobbes Resources. A resource in Hobbes is any piece of hardware
that is functionally “isolatable" from the other hardware resources
on a node. In general, resources are course grained components
collected by decomposing the full set of hardware resources on
a node. For example, a resource would consist of an entire CPU
core, or a large chunk of contiguous physical memory (the size is
con�gurable, but is typically 128MB). Resources do not “belong”
to any given OS/R but are rather dynamically allocated to entities
as they are needed. Resources are represented with an abstract re-
source handle that uniquely identi�es that resource in the database.
These handles are opaque, but can be translated to a hardware-level
representation of a given resource as needed.

4.2 User-level Resource Management
The primary resource management layer of Hobbes is a user-level
service that provides distributed access to each entity on the system.
This is accomplished using a node-level information service that
tracks the state of each hardware resource and OS/R instance/en-
tity. All of this state is collected and stored in a globally accessible
in-memory database created by a user-level daemon. The database
itself is stored in a raw physical memory that is explicitly mapped
into the address space of each entity that wishes to access it. The
database allows distributed operations so entities are capable of
directly manipulating the database state, which in turn allows enti-
ties to independently allocate certain resources directly as they are

Leviathan	Node	Manager
Entity: Any	piece	of	software	that	can	manage	a	raw	piece	of	hardware	
Resource: Any	piece	of	hardware	that	is	functionally	isolatable

Example:

4	enclaves
running	different
OS/R’s	coordinate
through	Leviathan
to	allocate	and	map
physical	resources

(e.g.,	cores,	memory,	
gpu devices) 0

 20

 40

 60

 80

 100

 120

 140

 160

16 32 64 128 256

G
FL

O
PS

Cores

Cray Linux
Cray Linux (Turbo Off)

Native Kitten
Guest Kitten

HPCG	Running	on	Leviathan
32	Cray	XC30	Nodes

3	Enclaves:	Native,	LWK	(Kitten),	VM	(Guest)

Impact:
Effective

coordination of
on-node resources
between multiple

OS/R environments
with excellent
performance

isolation capabilities

SC’17 Poster; conference paper in submission

All	environments	perform	similarly

11 Exascale Computing Project

• Problem
– Extreme-scale communication performance limited by speed

of MPI match time, but system behavior not well understood

• Approach
– Extended LogGOPSim simulator to track MPI resource usage

without perturbing application
– Track sizes and occupancy times of posted receive and

unexpected message queues (results shown for MILC)

11

PQ search depth increases with scale PQ occupancy decreases with scale

Search depths vary throughout execution

EuroMPI/USA ’17 Paper: “Characterizing MPI
Matching via Trace-based Simulation

Highlights: MPI Usage Characterization via Simulation

Impact:
Understanding of MPI
matching behavior to

guide hardware
implementation choices.

12 Exascale Computing Project

Highlights: Scalable Monitoring to Diagnose Runtime Variability
• Problem

– Performance variability is significant on modern systems and getting worse
– Common question from users: “Why does my application performance vary so much?”

• Approach
– Leverage scalable system monitoring infrastructure (LDMS)
– Analyze and identify actionable metrics associated with application performance degradation

• Key results
– Shared network contention and I/O are key sources of variability and can be measured
– Power usage differences across nodes can be useful for identifying anomalous system issues

12

Impact: Infrastructure for collecting + analyzing large volumes of actionable system monitoring data

Per-Node Memory Power Usage vs. Time: PARTISN on 1024 Trinity KNL Nodes

1 outlier node this run, other runs did not exhibit

Analysis of Cray Aries Network
Counters Identify Network Links

with High Congestion (Red)

CUG’17 Paper: “Runtime Collection and Analysis of System Metrics
for Production Monitoring of Trinity Phase II”

This run was 30% slower than other identical runs

13 Exascale Computing Project

Integration and Readiness
• Support other ATDM projects, e.g., Kokkos and Darma in SNL software stack

– Qthreads runtime also available through Spack

• Focus on performance and scalability
– Most performance testing done using Sandia’s ASC CSSE testbeds
– Larger scale testing using CTS and ATS systems

14 Exascale Computing Project

Related Projects
• Sandia ATDM Programming Models (Kokkos and Darma)

– We provide enabling system software support and a bridge for their technologies to Sandia’s
ASC Integrated Codes

• SNL ASC Integrated Codes (Non-ECP ASC Software)
– These are the NNSA mission applications, current and future consumers of ATDM technology

• ARGO project
– The other ECP OS project led by Argonne

• Non-DOE Software
– mOS, Intel’s lightweight OS that we are evaluating
– McKernel, RIKEN
– Cray Chapel language for high productivity HPC and Sandia Multithreaded Graph Library

(MTGL) use the Qthreads runtime system

15 Exascale Computing Project

Next Steps (FY18)
Project Milestone Title
TD Demonstrate efficient combination of Kokkos on-node parallelism with AMT in the contact/multiscale tech demonstrator

TD Develop stk::simd into toolset usable by ATDM applications, support and optimize the stk::simd toolset for ATS-1

OSR Integrate Kokkos-enabled contact into multiscale AMT technology demonstrator

OSR Coordinate with ATDM DevOps to make plan for utilizing containers for build and testing of Trilinos

OSR Prototype usage of containers and related technologies to support ATDM developer workflows

OSR Evaluate lightweight kernel operating systems on advanced architecture testbed, with vendor and ACES engagement to
investigate performance and tech transfer of Sandia lightweight kernel capabilities

OSR Resource manager applied to DARMA+Kokkos use case scenarios

OSR Runtime system pathfinding and development targeting ATS-1/2

OSR Characterization of MPI resource usage for ATDM workloads and its impacts on performance

OSR Prototype of message-based open source simulation framework capable of quantifying MPI resource usage for MPI-based ATDM
workloads

OSR Contribute to OpenMP, MPI, and UTI (Utility Thread Interface) specifications and vendor engagement in support of standards
compliant and scalable implementations to meet the needs of Kokkos and ATDM apps

16 Exascale Computing Project

Risks and Issues

Risk/Issue Mitigation
Shifting architectural landscape for
node designs and interconnect
technology

Track Path Forward efforts
and leverage the advanced
architecture testbeds

Resistance to new programming
models among IC developers

Engage early and often with
IC code teams

Overhead of reporting though multiple
channels diverts effort from the
technical work

Management commitment to
streamline reporting (Can ECP
leaders help reduce burden?)

December 2017 ECP ST Project Review
ECP Project WBS 2.3.5.04 (SNL ATDM Software Ecosystem)

PM: Ron Brightwell (Sandia Labs)
12/20/2017

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

